If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x+1=0
a = 5; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·5·1
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{95}}{2*5}=\frac{20-2\sqrt{95}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{95}}{2*5}=\frac{20+2\sqrt{95}}{10} $
| 1/2y+5-3/4y=4 | | 7x-2(x-2)=5(x+1)+9 | | 9x^2-7x+296=0 | | 3x^2-10=15 | | -6(3x+9)=-18x+54 | | 9a-6=5a+18 | | 0.1(30-x)=0.2-30 | | -2+17x=100° | | 4(3x-2=16 | | 1/5(x-5)=3x-2(x-1)+41/5 | | 8x+9=-13x+16 | | 10+16=6x-8 | | 7b-4b=12 | | 15–5(4c–7)=50 | | 14-x/3=22 | | 0=50+0-1/2(10)t^2 | | 7x2=-19 | | 0=(6x-3)-13 | | y/6=-24 | | p+2/6=9 | | (x+3)(x+2)=7 | | 4(x-5)=6(x-12) | | 6/f=2.5 | | X^2=2y-7 | | 4(x+2)-2x=24 | | 5(x+4)+9=5x+8 | | x-4=4-1 | | 0=x^2+16x+96 | | -7w+17=-4(w-2) | | –m+0.02+2.1m=–1.45–4.81m | | 2r+7=r+8 | | X2+{3*x}=88 |